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Abstract: Federated Machine Learning is a promising approach for training machine learning models on decentralized
data without the need for data centralization. Through a model-to-data approach, Federated Machine Learn-
ing yields huge potential from privacy by design to heavily reducing communication costs and offline usage.
However, the implementation and management of Federated Machine Learning projects can be challenging,
as it involves coordinating multiple parties across different stages of the project life cycle. We observed that
Federated Machine Learning is missing clarity over the individual involved roles including their activities, in-
teractions, dependencies, and responsibilities which are needed to establish governance and help practitioners
operationalize Federated Machine Learning projects. We argue that a process model, which is closely aligned
with established MLOps principles can provide this clarification. In this position paper, we make a case for the
necessity of a role model to structure distinct roles, an activity model to understand the involvement and opera-
tions of each role, and an artifact model to demonstrate how artifacts are used and structured. Additionally, we
argue, that a process model is needed to capture the dependencies and interactions between the roles, activities,
and artifacts across the different stages of the life cycle. Furthermore, we describe our research approach and
the current status of our ongoing research toward this goal. We believe that our proposed process model will
provide a foundation for the governance of Federated Machine Learning projects, and enable practitioners to
leverage the benefits of decentralized data computation.

1 PROBLEM STATEMENT

The increasing reliance on data-driven decision-
making has led to an expansion of machine learning
(ML) applications in various industries. However, the
use of ML often requires large amounts of data, which
is often collected from various sources including per-
sonal devices with sensors such as tablets, phones or
other IoT devices. While this data could be valuable
for training ML models to power intelligent services,
it also contains sensitive personal information which
must be protected. In traditional ML approaches, data
is often centralized in a single data lake, which can be
a privacy risk as it requires data transfer and allows a
potential misuse or breach of sensitive information.

To tackle these issues McMahan et al. (2016)
introduced Federated Machine Learning (FedML),
a novel decentralized ML paradigm. The proposed
algorithm follows a model-to-data approach, which
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enables training a common ML model on distributed
data while the data remains on the user’s devices and
therefore implements data privacy by design. The
FedML process is described in more detail in chapter
2. This approach yields a multitude of benefits in
addition to data privacy. For example, the model can
be used offline without the need of communicating
with a server and the communication load is heavily
reduced since only update gradients are shared
between the parties. Despite these potential advan-
tages, there are currently only a few production-level
applications and most work on FedML still comprises
prototypes or simulations (Lo et al., 2021).

Integrating ML systems into production-level
applications requires the operationalization and
incorporation of software development practices
of ML systems. This is a highly challenging task
since the addition of ML capabilities adds further
complexity to the system design and implementation



process (Serban et al., 2020; Kreuzberger et al., 2022;
Wan et al., 2021). Especially the data collection,
data preparation, training, monitoring as well as the
deployment process of a typical ML life cycle require
novel software engineering practices in comparison
to traditional software engineering (Sculley et al.,
2015; Serban et al., 2020). There is a persisting
discrepancy between the engineering of ML-capable
systems and the engineering of traditional software
(Giray, 2021). To bridge this gap, the traditional
software engineering ways of implementing code
need to be revisited due to the uniqueness of non-
deterministic ML systems.

To address these issues, a two-day long discus-
sion of 160 practitioners and researchers on the chal-
lenges and implications of engineering ML systems
at the First Symposium on Software Engineering for
Machine Learning Applications (SEMLA) (Khomh
et al., 2018) spawned two key questions:

• ”How should software development teams inte-
grate the AI model life cycle (training, testing, de-
ploying, evolving, and so on) into their software
process?”

• ”What new roles, artifacts, and activities come
into play, and how do they tie into existing agile
or DevOps processes?”
According to SEMLA, researching these two key

questions is essential to link software engineering and
ML development processes. Currently, a growing cor-
pus of academic literature is concerned with these
problems. Chandrasekaran et al. (2021), for exam-
ple, propose in their work on ML governance that
an operational life cycle consists of data preparation,
model development, and a model deployment phase.
Accordingly, they defined principals, the involvement
and interaction of these principals, and the life cycle
management of ML systems (Chandrasekaran et al.,
2021). Furthermore, Ritz et al. (2022) defined a com-
prehensive process model for ML systems to capture
the dependencies between the artifacts and activities
in a ML life cycle in order to bridge the gap be-
tween existing software engineering process models
and ML-specific procedures (Ritz et al., 2022). Also,
there has been a growing interest in defining princi-
ples, components, roles, and architectures in the con-
text of operationalizing MLOps workflows (Ruf et al.,
2021; Subramanya et al., 2022; Kreuzberger et al.,
2022).

Even though the key questions posed by SEMLA
have been addressed by the academic literature,
FedML introduces new processes and requirements
due to its decentral model-to-data approach. Due
to the decentralization and local training/usage

procedure, additional roles, activities, artifacts, and
life cycle stages need to be introduced. Before
FedML can be broadly operationalized, we argue that
these specific questions posed by SEMLA need to be
answered as well.

IEEE published a Guide for Architectural
Framework and Application of Federated Machine
Learning (IEEE, 2021), which defines a standard for
the FedML reference architecture including user role
descriptions of the FedML process. According to this
IEEE standard, a participant could play the role of a
data owner, model user, coordinator, and/or auditor.
These roles are presented with their accompanying
actions in the FedML process. This reference
architecture provides generalized information as a
template solution for the implementation of FedML
processes including structures and respective ele-
ments with their relation. The reference architecture
can be used as a basic foundation for the governance
of FedML projects. However, according to this
reference architecture, a single role is responsible for
multiple steps of a typical MLOps life cycle. For
instance, the activities of a coordinator comprise the
aggregation step, model management, data manage-
ment, deployment, and capabilities coordination.

We argue that the separation of roles and activities
should be closely aligned with established MLOps
stages and principles, such that the FedML specifics
can be easily integrated into known MLOps work-
flows. Hence, a more structured breakdown of the
activities and roles in relation to the different stages
of an End-to-End FedML life cycle is needed to fully
capture the dependencies and interactions between
these roles. Furthermore, defining the set of actors,
their roles and activities not only provides a clearer
understanding of the project’s setup, but also plays a
crucial part in the governance of the project (de Man
and Luvison, 2019; Kujala et al., 2021; Caridà et al.,
2018). To accomplish this, we aim to identify the dif-
ferences between MLOps and FedML-specifics to fi-
nally derive a formal process model for a full End-
to-End FedML life cycle. Through a holistic process
model, we hope to enable practitioners to set up and
provide a foundation for the governance of FedML
projects.

In summary, the planned final contributions of our
ongoing research would comprise:

• Role Model: To structure the individual roles in-
cluding their corresponding capabilities and re-
sponsibilities.

• Activity Model: To understand the involvement,
operations, and activities of each role.



• Artifact Model: To show how artifacts are used
and structured in the process flow.

• Process Model: To capture the different life cy-
cle stages including the interactions and depen-
dencies between the activities, roles, and artifacts.

To achieve this goal, we follow the Design
Science Research (DSR) conceptual framework by
Hevner et al. (2004) through an incorporated DSR
Methodology (DSRM) by Peffers et al. (2007) . The
problem identification and objective description have
been conducted through a focus group with three
different product teams and a total of ten participants.
The relevance and objectives have been confirmed
through five semi-structured expert interviews. The
knowledge base was built through a literature review.
In an iterative manner, we developed the first versions
of our models and evaluated the artifacts with a focus
group every four weeks. A more detailed description
of the conducted research methodology will be
provided in the report of the final results.

In the following, we present our current state of re-
search. In section 2, we will give a short introduction
to the FedML process. This is followed by section
3 with a high-level overview of our state of research.
This section comprises our current separation of roles
including a description of the corresponding activi-
ties and the life cycle of a FedML project. Finally, we
conclude with a discussion.

2 PRELIMINARIES

FedML is a novel ML paradigm that is concerned
with training a joint ML model on distributed datasets
over multiple iterations. In traditional ML settings,
data is usually assembled on a central data lake,
where the ML model is trained. Hence, data owners
are obliged to share their data with a central server
and therefore lose data sovereignty, which potentially
poses a privacy risk. Introduced by McMahan et
al. (2016), FedML counteracts this need of sharing
datasets. Through a model-to-data approach, FedML
enables K data owners to train a joint model MFED
iteratively without the need of disclosing their dis-
joint datasets {DK

i=1}. A simplified illustration of the
FedML process can be seen in Figure 1.

More specifically, the FedML protocol can be di-
vided into four distinct steps:

1. The server chooses an initial global model M
suitable for the use case and underlying data struc-
ture. The global model M can be initially trained
on the dataset of the server.
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Figure 1: One iteration of the FedML process.

2. The server distributes the global model M
amongst all clients.

3. Each client k trains the global model on its
own dataset and stores the update gradient gk =
∇Fk(wt). After the training process, each client
k owns its individually adapted ML model Mk
based on its dataset Dk.

4. The clients send the individually computed update
gradients back to the server. The gradients are ag-
gregated based on a pre-defined protocol and used
to update the global model.

This process can be repeated over several iterations
until the global model reaches a certain accuracy level
or the accuracy converges. In the original FedAVG
implementation (McMahan et al., 2016), the model
is learned through stochastic gradient descent (SGD)
and the aggregation scheme is as follows:

wt+1← wt −
K

∑
k=1

nk

n
wk

t+1

wk
t+1← wk

t −ηgk,∀k
(1)

FedML commonly uses a client-server architec-
ture consisting of a central orchestrating server and
multiple clients. However, completely decentral-
ized alternatives have been proposed, which estab-
lish a peer-to-peer network to exchange model up-
dates without a central server (Roy et al., 2019). In
this work, we solely focus on traditional client-server
FedML, since fully decentral architectures are rarely
used.

The distribution of features and samples across
datasets may not be homogeneous. If all datasets con-
tain different samples but share the same feature space
we refer to horizontal federated learning (HFL). If the
same samples are present in all datasets but the fea-
ture spaces are disjoint, we refer to vertical federated
learning (VFL) (Yin et al., 2021).



The collaborative nature of FedML implies a more
sophisticated training and usage process compared to
traditional, centralized ML. This may result in new
roles, activities, artifacts, and processes, which need
to be investigated and addressed.

3 STRUCTURING FEDERATED
MACHINE LEARNING
PROJECTS

To provide a clearer understanding of the process
structure, we first need to analyze the different ac-
tivities which are needed to implement and execute
the FedML processes as well as the MLOps work-
flows. These activities can be grouped and assigned
to different role definitions. Through examining the
resulting artifacts, interactions and dependencies, the
descriptions of the individual roles can be comple-
mented with their corresponding capabilities and re-
sponsibilities. With regard to the process model, it is
first needed to structure the project flow into different
life cycle stages. By combining the roles, activities,
artifacts, interactions and life cycle we can finally de-
rive a holistic process model. By this, we aim to en-
able practitioners to set up FedML projects as well as
provide a foundation for its governance.

The following presents our current proposal of
the involved roles with their corresponding activities
(section 3.1) and the different stages of the project
(section 3.2). It is important to note, that the following
descriptions are a high-level overview of our current
state of work and may differ from the final results.

3.1 Participating Roles and Activities

Apart from the high-level descriptions of the IEEE
standard (IEEE, 2021), no fixed roles for participants
within FedML projects have been uniformly defined
yet. We reviewed academic literature on ML Gover-
nance as well as reference architectures and identified
different role definitions of a traditional ML life cycle.
Furthermore, we performed a thorough analysis of a
FedML project flow and derived critical roles from
the technology specifics. Finally, we aggregated and
combined our findings which resulted in a set of par-
ticipating roles of the FedML process. The following
describes the identified roles including their responsi-
bilities and capabilities. It is essential to distinguish
between participant and role. One participant can take
on several roles, and one role can be assigned to sev-
eral participants.

• Model Manager: The model manager has the

business need of a problem to be solved with ML
and represents the initiator. He takes responsibil-
ity for the context and requirements specification.
The customer requirements are communicated to
the model owner and deployment details to the
model deployer. The primary capability is domain
and business knowledge.

• Model Owner: The model owner holds owner-
ship of the global ML model and is authorized
to decide on technical requirements. He gets
customer requirements from the model manager
and communicates technical requirements to the
model builder.

• Model Builder: The model builder defines the
ML model architecture and is responsible for
technical and system specifications. He acts as a
mediator between the model owner, data owner,
and model deployer. The primary capability is
FedML expertise. He specifies and coordinates
the training procedure, trains the initial model,
distributes the model, aggregates gradients, evalu-
ates the model, and provides the trained model to
the model deployer.

• Model Deployer: The model deployer serves the
ML model according to the deployment details
defined by the model manager. The primary capa-
bility is deployment knowledge and infrastructure
to serve the ML model.

• Data Owner: The data owner collects data,
cleans, transforms, trains the model, and sends
gradient updates to the model builder. The pri-
mary capability is a sufficient database with qual-
itative data to train the ML model and facilitate
the FedML infrastructure.

• End User: The end user consumes the deployed
ML model to solve a particular problem.

• Auditor: The auditor verifies the deployment of
the ML model, adheres to technical standards, and
adheres to compliance obligations.

• Adversary: The adversary is an entity trying to
disrupt, intercept, or cause harm to the system.

The roles can be grouped according to their tasks
in the FedML procedure. The Model Manager and the
Model Owner are mainly responsible for the manage-
ment and administration of the project. The Model
Builder and the Model Deployer are carrying out
the implementation and deployment of the FedML
model. The Data Owner undertakes the task of data
collection and local training of the model. The End
User, the Auditor, and the Adversary assume a role
that is not directly posted in the FedML training pro-
cess. Figure 2 visualizes the grouping and interac-
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Figure 2: Overview of the roles involved in the FedML process

tions between the different roles on a high level ab-
straction.

3.2 Life Cycle of a Federated Machine
Learning Project

To capture the involvement, interactions, and activi-
ties of each role as well as the arising dependencies,
it is necessary to provide a clearly structured project
process first. The decentral nature of the FedML
training process allows for collaborations of different
data owners. Hence, if we want to propose a holis-
tic life cycle we need to allow and depict collabora-
tive settings as well. According to Diirr and Cappelli
(2019) collaborative projects can be divided into five
main stages, from the creation of the collaboration,
operational execution, and evaluation leading to evo-
lution or dissolution. To adjust it to the FedML tech-
nology, we merged stages and included steps of op-
erational ML activities, as well as FedML-specifics.
Note, that the collaboration formation step is optional
and only has to be considered in collaborative set-
tings.

Fig. 3 shows an overview of the derived inter-
organizational FedML life cycle. The illustration un-
derlies simplifications to ease the readability of the
visualized process.

The first stage, the collaboration creation, com-
prises four sub-steps: identification, formation, via-
bility, and planning (Diirr and Cappelli, 2019). First,
the business need and the resulting collaborative busi-
ness opportunity are identified and characterized. In
addition, the strategy for inter-organizational collabo-
ration of the participants should be determined. Next,
the formation of the network of organizations starts
by identifying, evaluating, and selecting participants.
After that, the viability of the FedML project must
be assessed with the selected participants in terms of

technical and legal aspects, e.g., GDPR and antitrust.
Subsequently, the business project can be specified in
the planning, and the collaboration can be institution-
alized and contracts negotiated.

During this stage, iteration loops may arise, or the
project may be cancelled, e.g., if the feasibility study
fails.

The FedML development is the second stage and
includes the iterative process of the FedML setup,
training process, and testing and evaluation of the
model. The setup compromises the installation of
the infrastructure with all participants to execute the
iterative FedML steps, which are performed during
the training process (see Fig.1). Once the aggregated
FedML model has been successfully tested and eval-
uated with defined quality specifications, it moves to
the next stage.

The stage FedML operation describes the de-
ployment, monitoring, and operation of the global
FedML model. The model is served to the end cus-
tomer by deploying the model into a specified envi-
ronment and putting it into production to be used for
its purpose. The monitoring includes monitoring the
FedML model’s performance, selecting feedback, and
detecting problems as soon as possible. The operation
comprises the application of processes to maintain the
models in production environments.

The next stage, evaluation, assesses the FedML
model and the collaboration itself to decide how to
proceed with the project. The evaluation based on
evaluation criteria should lead to decisions on how to
proceed. In case of a retirement, the collaboration
will be closed, and it must be decided whether the
resulting FedML models remain to be distributed or
recalled. In the other case, an evolution means either
improvement or changes in the FedML development
or adaptation of the collaboration of the organizations.

The simplified life cycle does not represent all it-
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Figure 3: High-Level Overview of a FedML life cycle with exemplary iterative loops

erative possibilities and provides a rough guideline for
FedML projects.

4 DISCUSSION

Despite the potentially large benefits of breaking up
data silos, implementing privacy by design, and heav-
ily reducing the communication costs of ML appli-
cations, FedML only has seen a few production-level
applications and seems to be mainly in a prototype
stage. We observed that FedML is missing a struc-
tured process model which gives the involved parties
clarity over the structure, interactions, and responsi-
bilities of the full FedML life cycle process. We ar-
gue that this process model should be closely aligned
with established MLOps stages and principles such
that the FedML specifics can be easily integrated into
known workflows and therefore ease the operational-
ization. To provide this guidance, it is important to
define role descriptions including their activities, ca-
pabilities, and responsibilities. Furthermore, the re-
sulting artifacts throughout the life cycle need to be
derived. By combining the interactions and depen-
dencies between the roles, activities, and artifacts we
can provide a formal process model of an end-to-
end FedML life cycle. We argue that such a process
model is needed to provide a blueprint for practition-
ers to establish governance and integrate FedML into
their products. This position paper represents our cur-
rent state of research towards a process model, which
clearly structures the FedML life cycle with regard to
established MLOps practices. As a first step towards
this goal, we proposed an initial structuring of roles
and activities which are involved in the FedML train-
ing process as well as a high-level project life cycle.
Our current work focuses on capturing the artifacts,
interactions, and dependencies while iteratively inte-
grating our findings into the role and activity mod-
els. We finally aim to derive a holistic FedML process
model over the full project life cycle.
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